这种幽灵粒子可能是暗物质一直躲避我们的原因

这种幽灵粒子可能是暗物质一直躲避我们的原因

每秒,有 100 万亿个被称为中微子的神奇小粒子穿过你的身体。几乎所有中微子都会穿过你的皮肤,而不会与你发生任何相互作用。由于它们很害羞,物理学家很难探测到这些粒子。

但在过去几十年里,中微子物理学界一直面临着新的挑战。

在俄罗斯高加索山脉深处进行的一项实验中,物理学家发现了进一步的证据(于 6 月 9 日发表在两篇论文中),表明当前中微子理论的一部分是不正确的。如果他们是对的,它可能会揭示一种前所未见的中微子,这种中微子可能更加不为人知,并可能解释为什么我们看不到构成我们宇宙大部分的暗物质。

“在我看来,这或许是中微子物理学领域最重要的成果之一,至少是过去五年来如此,”德克萨斯大学阿灵顿分校的中微子物理学家本·琼斯 (Ben Jones) 表示,但他并未参与此项实验。

在洛斯阿拉莫斯实验中,一组 26 个辐照过的铬 51 圆盘提供了电子中微子的来源,这些电子中微子与镓发生反应,产生锗 71,其速率可以与预测速率进行测量。AA Shikhin

行为不端的中微子案例

就像来自以太层面的生物一样,中微子与周围物质的反应很少。由于不带电荷,它们不易受到电磁的影响。它们也不会参与强核相互作用,而强核相互作用有助于将原子中心的粒子结合在一起。

但是中微子确实在弱核力中发挥了作用,根据标准模型(构成现代粒子物理学基础的理论框架),弱核力是某些类型放射性的原因。

我们在地球上观察到的绝大多数中微子都来自太阳的放射性过程。为了观察这些中微子,科学家依靠海底或地壳深处的中微子观测站。判断中微子探测器是否正常工作通常并不容易,因此物理学家可以通过在附近放置某些同位素(如铬-51,他们对其中微子发射非常了解)来校准他们的设备。

然而,随着中微子物理学在 20 世纪 90 年代蓬勃发展,研究人员注意到了一些奇怪的现象。在一些实验中,当他们校准探测器时,他们发现中微子的数量比理论粒子物理学中计算的要少。

例如,1997 年,在新墨西哥州洛斯阿拉莫斯国家实验室,美国和俄罗斯的科学家设置了一个装满镓的容器,镓是一种在温暖的夏日里呈液态的金属。当中微子撞击镓时,该元素的原子吸收了这些粒子。这一过程将镓转化为一种更坚固的金属锗——一种逆放射性衰变。物理学家测量了锗,以追踪有多少中微子穿过了容器。

但当洛斯阿拉莫斯团队用铬-51 测试他们的系统时,他们发现镓太多了,换句话说,中微子太少了。这种不足被称为“镓异常”。

[相关:洛斯阿拉莫斯实验室为何致力于制造新型钚芯这一棘手任务]

从那时起,研究镓异常的专家们开始探索一种初步解释。粒子物理学家知道中微子有三种“类型”:电子中微子、μ 中微子和 τ 中微子,每种类型在量子世界的舞蹈中扮演着不同的角色。在某些情况下,可以观察到中微子在不同类型之间切换。这些转变被称为“中微子振荡”。

这引出了一个有趣的可能性——中微子之所以在镓异常中消失,是因为它们跳入了另一种隐藏的中微子,这种中微子对物理世界的反应甚至更低。物理学家为这一类别想出了一个名字:惰性中微子。

惰性中微子的故事只是一个想法,但它得到了支持。大约在同一时间,洛斯阿拉莫斯和芝加哥郊区费米实验室等地的物理学家开始直接观察中微子振荡。当他们这样做时,他们发现他们预期出现的每种类型的中微子数量与实际出现的中微子数量存在差异。

琼斯说:“要么是一些实验是错误的,要么是发生了一些更有趣、更奇怪的事情,并且有不同的特征。”

巴克桑无菌转变实验的主要装置。VN Gavrin/BEST

寻找无菌特征

那么惰性中微子会是什么样子呢?“惰性”这个名字,以及物理学家尚未通过正常渠道探测到它们的事实,表明这类粒子也不受弱核力的影响。这样一来,它们与环境的相互作用就只剩下一种方式:引力。

中微子处于亚原子尺度,由于质量极小,引力极其微弱。惰性中微子极难探测。

直到 21 世纪,情况依然如此,因为这些异常太过不一致,物理学家无法判断它们是否等同于惰性中微子。一些实验发现了异常,而另一些实验则根本没有发现。实验的总体结果似乎描绘了一幅间接证据的壁画。“我想很多人都是这么认为的,”琼斯说。“我也是这么认为的。”

因此,物理学家们创建了一个全新的天文台来测试洛斯阿拉莫斯的镓异常现象。他们将其命名为巴克桑惰性跃迁实验,或者按照物理学引以为傲的缩写传统,称之为 BEST。

该天文台位于俄罗斯卡巴尔达-巴尔卡尔共和国巴克桑河地下一英里多深的一条隧道中,与格鲁吉亚隔山相望。在俄罗斯入侵乌克兰导致当地科学界陷入混乱之前,一个国际粒子物理学家团队在那里重现了洛斯阿拉莫斯镓实验,专门寻找失踪的中微子。

BEST 再次发现了异常,检测到的锗含量比预期少了 20% 到 25%。“这无疑再次证实了我们在之前的实验中看到的异常,”洛斯阿拉莫斯国家实验室的粒子物理学家、BEST 实验的合作者史蒂夫·埃利奥特 (Steve Elliot) 在 6 月初的一份声明中表示。“但这意味着什么并不明显。”

尽管结果令人满意,但物理学家们并没有因此而自满。BEST 只是一个实验,它并不能解释所有归因于惰性中微子的差异。(其他分析认为费米实验室的结果不可能是惰性中微子的迹象,尽管他们没有提供其他解释。)

[相关:见识一下暗物质中的神秘黑马粒子]

但如果科学家在其他场景中找到类似的证据——比如,在埋在南极冰盖下的中微子实验冰立方中,或者在其他专门为搜寻惰性中微子而设计的探测器中——那将提供真实的、令人信服的证据,证明那里存在着某种东西。

如果 BEST 结果成立,并得到其他实验的证实,这并不意味着惰性中微子是造成这一异常的原因。其他未被发现的粒子可能在起作用,或者整个差异可能是某种奇怪而未知的过程的痕迹。然而,如果惰性中微子理论是正确的,它将打破世界上一些最小物体背后的最大理论。

琼斯说:“这将是真实的证据,不仅是超越标准模型的物理学证据,而且是真正全新的、未被理解的物理学证据。”

简单来说,如果惰性中微子存在,其影响将远远超出粒子物理学。惰性中微子可能构成了我们宇宙中暗物质的大部分,暗物质的含量是我们可见物质的六倍——而其成分我们仍不了解。

<<:  加密货币公司正在涉足碳排放额度。但它们真的能帮助改善气候吗?

>>:  科学研究明确:金属音乐有益健康

推荐阅读

《野良美》:猫耳少女的冒险与成长的动人故事

《野良美》:一个由古怪人物交织而成的幽默与成长故事■作品概要《野良美》是改编自原一夫同名漫画的电视动...

电池价格正在大幅下降。这对地球来说是个好消息。

多年来,气候科学家一直敦促世界各国政府从化石燃料转向可再生能源。近年来,风能和太阳能发电厂越来越受欢...

野生牡蛎在以“R”结尾的月份最美味——原因如下

本周你学到的最奇怪的事情是什么?好吧,不管是什么,我们保证如果你听PopSci的热门播客,你会得到一...

恐惧究竟从何而来?

摘自伊娃·霍兰 (Eva Holland) 所著的《神经:恐惧科学历险记》。经《实验》许可转载。乍一...

第一次太空行走是什么感觉

迈克·马西米诺从小时候看到尼尔·阿姆斯特朗在月球上迈出著名的第一步的那一刻起,就迫切地想成为一名宇航...

美国宇航局任务的真实成本

自 1958 年成立以来,NASA 取得了一些相当惊人的科学成就。我们国家已经六次将人类送上月球。我...

《教导》的号召力与评价:教育类动漫的新标准

“教”:猴子海盗团环游世界的冒险故事■ 公共媒体电视动画系列■ 原创媒体动漫原创■ 播出时间2011...

如何让散发着陈腐气味的衣服为穿毛衣的天气做好准备

我们可能会从本页提供的产品中赚取收益并参与联盟计划。了解更多 ›当气温下降,是时候将冬季装备从储藏室...

滑子一家~描绘迷人日常生活的轻松动画~

《蘑菇家族:你好,蘑菇家族》的号召力与评价《蘑菇家族:你好,蘑菇家族》于2013年12月20日以O...

如何保护你的智能手机隐私

本文已更新。最初发表于 2017 年 4 月 19 日。您已经加强了在线账户的安全性,因此您可以放心...

Gorillaman:其独特的人物和故事有什么吸引力?

Gorillaman - OVA 的魅力和背景1992 年 6 月 25 日发布的 OVA“Gor...

iRobot 如何控制你的智能家居并成为你的管家

2002 年,科林·安格尔 (Colin Angle) 将他的 Roombas 大军派到了我们的家中...

如何像专业人士一样拍摄月亮

这个故事最初发表于 2018 年,现已更新。月亮是摄影的噱头。它悬挂在天空中,又大又亮。然后你试图给...

您中彩票的几率有多大?[信息图]

人们刚刚赢得了那笔荒谬的、破纪录的 5.799 亿美元的强力球大奖。甚至只有两个人!但你知道谁没有赢...

6chan 正在睡觉:彻底分析《大家的歌》的魅力和情感

《6chan Nekoronde》:NHK的经典动画及其魅力《6-chan Nekoronde》是1...